播放记录

葉 葉 av

状态:完结
类型:恐怖 
主演:Anastasiya 布兰登 
导演:Koshinaka 
年代:2008年 

播放地址:

不能播放,报错

《葉 葉 av》剧情简介

&;&;  本片从证明了费玛最后定理的安德鲁‧怀尔斯 开始谈起,描述了 的历史始末,往前回溯来看,年正是我在念大学的时候,当时完全没有一位教授在课堂上提到这件事,也许他们认为,一位真正的研究者,自然而然地会被数学吸引,然而对一位不是天才的学生来说,他需要的是老师的指引,引导他走向更高深的专业认知,而指引的道路,就在科普的精神上。&;&;  从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。&;&;  费玛最后定理:+= 当 &; 时,不存在整数解&;&;   年 安德鲁‧怀尔斯 被埃里克‧坦普尔‧贝尔 的一本书吸引,「最后问题 」,故事从这里开始。&;&;   毕达哥拉斯 定理,任一个直角三角形,斜边的平方=另外两边的平方和&;&;  +=&;&;  毕达哥拉斯三元组:毕氏定理的整数解&;&;   费玛 在研究丢番图 的「算数」第卷的问题时,在页边写下了註记&;&;  「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於次幂,写成两个同样次幂的和。」&;&;  「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」&;&;   年,费玛 的儿子出版了载有註记的「丢番图的算数」&;&;   在的其他註记中,隐含了对 = 的证明 =&; =, , , 时无解&;&;  莱昂哈德‧欧拉 证明了 = 时无解 =&; =, , , 时无解&;&;  是质数,现在只要证明费玛最后定理对於所有的质数都成立&;&;  但 欧基里德 证明「存在无穷多个质数」&;&;   年 索菲‧热尔曼 针对 (+)的质数,证明了 费玛最后定理 &;大概&; 无解&;&;   年 古斯塔夫‧勒瑞-狄利克雷 和 阿得利昂-玛利埃‧勒让德 延伸热尔曼的证明,证明了 = 无解&;&;   年 加布里尔‧拉梅 证明了 = 无解&;&;   年 拉梅 与 奥古斯汀‧路易斯‧科西 同时宣称已经证明了 费玛最后定理&;&;  最后是刘维尔宣读了 恩斯特‧库默尔 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败&;&;  库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的&;&;  年 保罗‧沃尔夫斯凯尔 补救了库默尔的证明&;&;  这表示 费玛最后定理的完整证明 尚未被解决&;&;  沃尔夫斯凯尔提供了 万马克 给提供证明的人,期限是到年月日止&;&;  年月日 大卫‧希尔伯特,提出数学上个未解决的问题且相信这是迫切需要解决的重要问题&;&;  年 库特‧哥德尔 不可判定性定理&;&;  第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。&;&;  =&; 完全性是不可能达到的&;&;  第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。&;&;  =&; 相容性永远不可能证明&;&;  年 保罗‧科恩 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)&;&;  证明希尔伯特个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击&;&;  年 阿伦‧图灵 发明破译 编码 的反转机&;&;  开始有人利用暴力解决方法,要对 费玛最后定理 的值一个一个加以证明。&;&;  年 内奥姆‧埃尔基斯 对於 提出的 ++= 不存在解这个推想,找到了一个反例&;&;  ++=&;&;  年 安德鲁‧怀尔斯 师承 约翰‧科次,研究椭圆曲线&;&;  研究椭圆曲线的目的是要算出他们的整数解,这跟费玛最后定理一样&;&;   =- 只有一组整数解 =-&;&;  (费玛证明宇宙中指存在一个数,他是夹在一个平方数与一个立方数中间)&;&;  由於要直接找出椭圆曲线是很困难的,为了简化问题,数学家採用「时鐘运算」方法&;&;  在五格时鐘运算中, +=&;&;  椭圆方程式 -=+&;&;  所有可能的解为 (, )=(, ) (, ) (, ) (, ),然后可用 = 来代表在五格时鐘运算中,有四个解&;&;  对於椭圆曲线,可写出一个 序列 =, =, &;&;  年 至村五郎 与 谷山丰 研究具有非同寻常的对称性的 模型式&;&;  模型式的要素可从开始标号到无穷(, , , )&;&;  每个模型式的 序列 要素个数 可写成 = = 这样的范例&;&;  年月 提出模型式的 序列 可以对应到椭圆曲线的 序列,两个不同领域的理论突然被连接在一起&;&;  安德列‧韦依 採纳这个想法,「谷山-志村猜想」&;&;  朗兰兹提出「朗兰兹纲领」的计画,一个统一化猜想的理论,并开始寻找统一的环链&;&;  年 格哈德‧弗赖 提出&;&;  () 假设费玛最后定理是错的,则 += 有整数解,则可将方程式转换为=+(-)- 这样的椭圆方程式&;&;  () 弗赖椭圆方程式太古怪了,以致於无法被模型式化&;&;  () 谷山-志村猜想 断言每一个椭圆方程式都可以被模型式化&;&;  () 谷山-志村猜想 是错误的&;&;  反过来说&;&;  () 如果 谷山-志村猜想 是对的,每一个椭圆方程式都可以被模型式化&;&;  () 每一个椭圆方程式都可以被模型式化,则不存在弗赖椭圆方程式&;&;  () 如果不存在弗赖椭圆方程式,那么+= 没有整数解&;&;  () 费玛最后定理是对的&;&;  年 肯‧贝里特 证明 弗赖椭圆方程式无法被模型式化&;&;  如果有人能够证明谷山-志村猜想,就表示费玛最后定理也是正确的&;&;  年 安德鲁‧怀尔斯 开始一个小阴谋,他每隔个月发表一篇小论文,然后自己独力尝试证明谷山-志村猜想,策略是利用归纳法,加上 埃瓦里斯特‧伽罗瓦 的群论,希望能将序列以「自然次序」一一对应到序列&;&;  年 宫冈洋一 发表利用微分几何学证明谷山-志村猜想,但结果失败&;&;  年 安德鲁‧怀尔斯 已经将椭圆方程式拆解成无限多项,然后也证明了第一项必定是模型式的第一项,也尝试利用 依娃沙娃 理论,但结果失败&;&;  年 修改 科利瓦金-弗莱契 方法,对所有分类后的椭圆方程式都奏效&;&;  年 寻求同事 尼克‧凯兹 的协助,开始对验证证明&;&;  年月 「-函数和算术」会议,安德鲁‧怀尔斯 发表谷山-志村猜想的证明&;&;  年月 尼克‧凯兹 发现一个重大缺陷&;&;  安德鲁‧怀尔斯 又开始隐居,尝试独力解决缺陷,他不希望在这时候公布证明,让其他人分享完成证明的甜美果实&;&;  安德鲁‧怀尔斯 在接近放弃的边缘,在彼得‧萨纳克的建议下,找到理查德‧泰勒的协助&;&;  年月日 发现结合 依娃沙娃 理论与 科利瓦金-弗莱契 方法就能够完全解决问题&;&;  「谷山-志村猜想」被证明了,故得证「费玛最后定理」&;&;  &;&;  费马大定理&;&;  多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设是大于的正整数,则不定方程+=没有非零整数解”。&;&;  费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最着名的定理—费马大定理。&;&;  费马(年~年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。&;&;  费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。年瓦格斯塔夫证明了对小于的素数费马大定理都成立。年一位年轻的德国数学家法尔廷斯证明了不定方程+=只能有有限多组解,他的突出贡献使他在年获得了数学界的最高奖之一费尔兹奖。年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。&;&;  为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。年,美国普林斯顿大学的安德鲁·怀尔斯教授经过年的孤军奋战,用&;&;  页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。&;&;  费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达&;&;  哥拉斯定理——来表达的。多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,&;&;  斜边的平方等于两直角边的平方之和。即+=。大约在公元年前后 ,当费马在&;&;  研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:+=,当&;&;  大于时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题的页边处记下这&;&;  个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空&;&;  白太小,写不下。”这就是数学史上着名的费马大定理或称费马最后的定理。费马制造了&;&;  一个数学史上最深奥的谜。&;&;  大问题&;&;  在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不&;&;  解。··贝尔( )在他的《大问题》( )一书中写到,&;&;  文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最&;&;  值得为之奋斗的事。&;&;  安德鲁·怀尔斯年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯&;&;  已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,&;&;  编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。&;&;  ”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答&;&;  ,怀尔斯被吸引住了。&;&;  这就是··贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又&;&;  一个的数学家望而生畏,在长达多年的时间里没有人能解决它。怀尔斯多年后回忆&;&;  起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解&;&;  决它。这里正摆着我——一个岁的孩子——能理解的问题,从那个时刻起,我知道我永&;&;  远不会放弃它。我必须解决它。”&;&;  怀尔斯年从牛津大学的学院获得数学学士学位,之后进入剑桥大学&;&;  学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能&;&;  带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨( &;&;  )正在研究椭圆曲线的理论,我开始跟随他工作。” 科茨说:“我记得一位同事&;&;  告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其&;&;  为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的&;&;  思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研&;&;  究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任&;&;  是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究&;&;  生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定&;&;  是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他&;&;  的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。&;&;  ”&;&;  科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的&;&;  一个转折点,椭圆方程的研究是他实现梦想的工具。&;&;  孤独的战士&;&;  年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学&;&;  的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一&;&;  个着名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马&;&;  大定理的任务也是极为艰巨的。&;&;  在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非&;&;  常不同的数学领域间建立了一座新的桥梁。“那是年夏末的一个傍晚,我正在一个朋&;&;  友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大&;&;  定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为&;&;  这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚&;&;  我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。&;&;  世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他&;&;  回答说:“在开始着手之前,我必须用年的时间作深入的研究,而我没有那么多的时间&;&;  浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到&;&;  这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。&;&;  怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费&;&;  马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中&;&;  ,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有&;&;  与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶&;&;  楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。&;&;  这是一场长达年的持久战,这期间只有他的妻子知道他在证明费马大定理。&;&;  欢呼与等待&;&;  经过年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了&;&;  费马大定理。现在是向世界公布的时候了。年月底,有一个重要的会议要在剑桥大&;&;  学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择&;&;  在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。&;&;  年月日,牛顿研究所举行了世纪最重要的一次数学讲座。两百名数学家聆&;&;  听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达&;&;  的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安&;&;  德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风&;&;  声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯&;&;  定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完&;&;  费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声&;&;  。”&;&;  《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道&;&;  费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最着名的数学家,也是唯一的数&;&;  学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度位最具魅力者”。最有创&;&;  意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模&;&;  特。&;&;  当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要&;&;  求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审&;&;  稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个&;&;  夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发&;&;  现了。&;&;  我的心灵归于平静&;&;  由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定&;&;  -个审稿人,而是个审稿人。页的证明被分成章,每位审稿人负责其中一章。&;&;  怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这&;&;  些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第章,年月日,他发现了&;&;  证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都&;&;  行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是个多月过去了&;&;  ,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情&;&;  况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过&;&;  长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作&;&;  。&;&;  泰勒年月份到普林斯顿,可是到了月,依然没有结果,他们准备放弃了。泰勒&;&;  鼓励他们再坚持一个月。怀尔斯决定在月底作最后一次检查。月日,一个星期一的早&;&;  晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个&;&;  难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如&;&;  此地难以形容;它又是如此简单和优美。多分钟的时间我呆望它不敢相信。然后白天我&;&;  到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”&;&;  这是少年时代的梦想和年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世&;&;  界不再怀疑这一次的证明了。这两篇论文总共有页,是历史上核查得最彻底的数学稿&;&;  件,它们发表在年月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版&;&;  上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最&;&;  终的证明可与分裂原子或发现的结构相比,对费马大定理的证明是人类智力活动的一&;&;  曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安&;&;  德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”&;&;  声望和荣誉纷至沓来。年,怀尔斯获得瑞典皇家学会颁发的数学奖,&;&;  年,他获得沃尔夫奖,并当选为美国科学院外籍院士。&;&;  怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如&;&;  此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,&;&;  我的心已归于平静。”&;&;  费马大定理只有在相对数学理论的建立之后,才会得到最满意的答案。相对数学理论没有完成之前,谈这个问题是无力地因为人们对数量和自身的认识,还没有达到一定的高度&;&;  &;&;  费马大定理与怀尔斯的因果律-美国公众广播网对怀尔斯的专访&;&;  年的难解之谜&;&;  数学爱好者费马提出的这个问题非常简单,它用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理来表达。多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两个直角边的平方之和。即+=。大约在公元年前后 ,当费马在研究毕达哥拉斯方程时,他在《算术》这本书靠近问题的页边处写下了这段文字:“设是大于的正整数,则不定方程+=没有非整数解,对此,我确信已发现一个美妙的证法,但这里的空白太小,写不下。”费马习惯在页边写下猜想,费马大定理是其中困扰数学家们时间最长的,所以被称为’ (费马最后的定理)——公认为有史以来最着名的数学猜想。&;&;  在畅销书作家西蒙·辛格( )的笔下,这段神秘留言引发的长达年的猎逐充满了惊险、悬疑、绝望和狂喜。这段历史先后涉及到最多产的数学大师欧拉、最伟大的数学家高斯、由业余转为职业数学家的柯西、英年早逝的天才伽罗瓦、理论兼试验大师库默尔和被誉为“法国历史上知识最为高深的女性”的苏菲·姬尔曼……法国数学天才伽罗瓦的遗言、日本数学界的明日之星谷山丰的神秘自杀、德国数学爱好者保罗·沃尔夫斯凯尔最后一刻的舍死求生等等,都仿佛是冥冥间上帝导演的宏大戏剧中的一幕,为最后谜底的解开埋下伏笔。终于,普林斯顿的怀尔斯出现了。他找到谜底,把这出戏推向高潮并戛然而止,留下一段耐人回味的传奇。&;&;  对怀尔斯而言,证明费马大定理不仅是破译一个难解之谜,更是去实现一个儿时的梦想。“我岁时在图书馆找到一本数学书,告诉我有这么一个问题,多年前就已经有人解决了它,但却没有人看到过它的证明,也无人确信是否有这个证明,从那以后,人们就不断地求证。这是一个岁小孩就能明白的问题,然后历史上诸多伟大的数学家们却不能解答。于是从那时起,我就试过解决它,这个问题就是费马大定理。”&;&;  怀尔斯于年先后在牛津大学和剑桥大学获得数学学士和数学博士学位。“我进入剑桥时,我真正把费马大定理搁在一边了。这不是因为我忘了它,而是我认识到我们所掌握的用来攻克它的全部技术已经反复使用了年。而这些技术似乎没有触及问题根本。”因为担心耗费太多时间而一无所获,他“暂时放下了”对费马大定理的思索,开始研究椭圆曲线理论——这个看似与证明费马大定理不相关的理论后来却成为他实现梦想的工具。&;&;  时间回溯至世纪年代,普林斯顿数学家朗兰兹提出了一个大胆的猜想:所有主要数学领域之间原本就存在着的统一的链接。如果这个猜想被证实,意味着在某个数学领域中无法解答的任何问题都有可能通过这种链接被转换成另一个领域中相应的问题——可以被一整套新方案解决的问题。而如果在另一个领域内仍然难以找到答案,那么可以把问题再转换到下一个数学领域中……直到它被解决为止。根据朗兰兹纲领,有一天,数学家们将能够解决曾经是最深奥最难对付的问题——“办法是领着这些问题周游数学王国的各个风景胜地”。这个纲领为饱受哥德尔不完备定理打击的费马大定理证明者们指明了救赎之路——根据不完备定理,费马大定理是不可证明的。&;&;  怀尔斯后来正是依赖于这个纲领才得以证明费马大定理的:他的证明——不同于任何前人的尝试——是现代数学诸多分支(椭圆曲线论,模形式理论,伽罗华表示理论等等)综合发挥作用的结果。世纪年代由两位日本数学家(谷山丰和志村五郎)提出的谷山—志村猜想(- )暗示:椭圆方程与模形式两个截然不同的数学岛屿间隐藏着一座沟通的桥梁。随后在年,德国数学家格哈德·费赖( )给出了如下猜想:假如谷山—志村猜想成立,则费马大定理为真。这个猜想紧接着在年被肯·里贝特( )证明。从此,费马大定理不可摆脱地与谷山—志村猜想链接在一起:如果有人能证明谷山—志村猜想(即“每一个椭圆方程都可以模形式化”),那么就证明了费马大定理。&;&;  “人类智力活动的一曲凯歌”&;&;  怀尔斯诡秘的行踪让普林斯顿的着名数学家同事们困惑。彼得·萨奈克( )回忆说:“ 我常常奇怪怀尔斯在做些什么?……他总是静悄悄的,也许他已经‘黔驴技穷’了。”尼克·凯兹则感叹到:“一点暗示都没有!”对于这次惊天“大预谋”,肯·里比特( )曾评价说:“这可能是我平生来见过的唯一例子,在如此长的时间里没有泄露任何有关工作的信息。这是空前的。&;&;  年晚春,在经过反复的试错和绞尽脑汁的演算,怀尔斯终于完成了谷山—志村猜想的证明。作为一个结果,他也证明了费马大定理。彼得·萨奈克是最早得知此消息的人之一,“我目瞪口呆、异常激动、情绪失常……我记得当晚我失眠了”。&;&;  同年月,怀尔斯决定在剑桥大学的大型系列讲座上宣布这一证明。 “讲座气氛很热烈,有很多数学界重要人物到场,当大家终于明白已经离证明费马大定理一步之遥时,空气中充满了紧张。” 肯·里比特回忆说。巴里·马佐尔( )永远也忘不了那一刻:“我之前从未看到过如此精彩的讲座,充满了美妙的、闻所未闻的新思想,还有戏剧性的铺垫,充满悬念,直到最后到达高潮。”当怀尔斯在讲座结尾宣布他证明了费马大定理时,他成了全世界媒体的焦点。《纽约时报》在头版以《终于欢呼“我发现了!”久远的数学之谜获解》(“ ‘!’ - ”)为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度位最具魅力者”。&;&;  与此同时,认真核对这个证明的工作也在进行。遗憾的是,如同这之前的“费马大定理终结者”一样,他的证明是有缺陷的。怀尔斯现在不得不在巨大的压力之下修正错误,其间数度感到绝望。 曾在美国公众广播网()的访谈中说 “当时我们其他人(怀尔斯的同事)的行为有点像‘苏联政体研究者’,都想知道他的想法和修正错误的进展,但没有人开口问他。所以,某人会说,‘我今天早上看到怀尔斯了。’‘他露出笑容了吗?’‘他倒是有微笑,但看起来并不高兴。’”&;&;  撑到年月时,怀尔斯准备放弃了。但他临时邀请的研究搭档泰勒鼓励他再坚持一个月。就在截止日到来之前两周, 月日 ,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我发现了它……它美得难以形容,简单而优雅。我对着它发了多分钟呆。然后我到系里转了一圈,又回到桌子旁看看它是否还在那里——它确实还在那里。”&;&;  怀尔斯的证明为他赢得了最慷慨的褒扬,其中最具代表性的是他在剑桥时的导师、着名数学家约翰·科茨的评价:“它(证明)是人类智力活动的一曲凯歌”。&;&;  一场旷日持久的猎逐就此结束,从此费马大定理与安德鲁·怀尔斯的名字紧紧地被绑在了一起,提到一个就不得不提到另外一个。这是费马大定理与安德鲁·怀尔斯的因果律。&;&;  历时八年的最终证明&;&;  在怀尔斯不多的接受媒体采访中,美国公众广播网()节目对怀尔斯的专访相当精彩有趣,本文节选部分以飨读者。&;&;  七年孤独&;&;  :通常人们通过团队来获得工作上的支持,那么当你碰壁时是怎么解决问题的呢?&;&;  怀尔斯:当我被卡住时我会沿着湖边散散步,散步的好处是使你会处于放松状态,同时你的潜意识却在继续工作。通常遇到困扰时你并不需要书桌,而且我随时把笔纸带上,一旦有好主意我会找个长椅坐下来打草稿……&;&;  :这七年一定交织着自我怀疑与成功……你不可能绝对有把握证明。&;&;  怀尔斯:我确实相信自己在正确的轨道上,但那并不意味着我一定能达到目标——也许仅仅因为解决难题的方法超出现有的数学,也许我需要的方法下个世纪也不会出现。所以即便我在正确的轨道上,我却可能生活在错误的世纪。&;&;  :最终在年,你取得了突破。&;&;  怀尔斯:对,那是个月末的早上。,我的太太,和孩子们出去了。我坐在书桌前思考最后的步骤,不经意间看到了一篇论文,上面的一行字引起了我的注意。它提到了一个世纪的数学结构,我霎时意识到这就是我该用的。我不停地工作,忘记下楼午饭,到下午三四点时我确信已经证明了费马大定理,然后下楼。很吃惊,以为我这时才回家,我告诉她,我解决了费马大定理。&;&;  最后的修正&;&;  :《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》,但他们并不知道这个证明中有个错误。&;&;  怀尔斯:那是个存在于关键推导中的错误,但它如此微妙以至于我忽略了。它很抽象,我无法用简单的语言描述,就算是数学家也需要研习两三个月才能弄懂。&;&;  :后来你邀请剑桥的数学家理查德·泰勒来协助工作,并在年修正了这个最后的错误。问题是,你的证明和费马的证明是同一个吗?&;&;  怀尔斯:不可能。这个证明有页长,用的是世纪的方法,在费马时代还不存在。&;&;  :那就是说费马的最初证明还在某个未被发现的角落?&;&;  怀尔斯:我不相信他有证明。我觉得他说已经找到解答了是在哄自己。这个难题对业余爱好者如此特别在于它可能被世纪的数学证明,尽管可能性极其微小。&;&;  :所以也许还有数学家追寻这最初的证明。你该怎么办呢?&;&;  怀尔斯:对我来说都一样,费马是我童年的热望。我会再试其他问题……证明了它我有一丝伤感,它已经和我们一起这么久了……人们对我说“你把我的问题夺走了”,我能带给他们其他的东西吗?我感觉到有责任。我希望通过解决这个问题带来的兴奋可以激励青年数学家们解决其他许许多多的难题。&;&;  &;&;  谷山-志村定理(- )建立了椭圆曲线(代数几何的对象)和模形式(某种数论中用到的周期性全纯函数)之间的重要联系。虽然名字是从谷山-志村猜想而来,定理的证明是由安德鲁·怀尔斯, , , ,和 完成&;&;  若是一个质数而是一个(有理数域)上的一个椭圆曲线,我们可以简化定义的方程模;除了有限个值,我们会得到有个元素的有限域上的一个椭圆曲线。然后考虑如下序列&;&;   = − ,&;&;  这是椭圆曲线的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。 谷山-志村定说&;&;  &;所有上的椭圆曲线是模的&;。&;&;  该定理在年月由谷山丰提出猜想。到年为止,他和志村五郎一起改进了严格性。谷山于年自杀身亡。在年代,它和统一数学中的猜想纲领联系了起来,并是关键的组成部分。猜想由é 于年代重新提起并得到推广,的名字有一段时间和它联系在一起。尽管有明显的用处,这个问题的深度在后来的发展之前并未被人们所感觉到。&;&;  在年代当 建议谷山-志村猜想(那时还是猜想)蕴含着费马最后定理的时候,它吸引到了不少注意力。他通过试图表明费尔马大定理的任何范例会导致一个非模的椭圆曲线来做到这一点。 后来证明了这一结果。在年, 和 证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理。&;&;  完整的证明最后于年由,,,和作出,他们在的基础上,一块一块的逐步证明剩下的情况直到全部完成。&;&;  数论中类似于费尔马最后定理得几个定理可以从谷山-志村定理得到。例如没有立方可以写成两个互质次幂的和, ≥ ( = 的情况已为欧拉所知)&;&;  在年三月,和 分享了沃尔夫奖。虽然他们都没有完成给予他们这个成就的定理的完整形式,他们还是被认为对最终完成的证明有着决定性影响。&;&;

《葉 葉 av》相关视频

  • av 家庭 教師 4.51080P

    av 家庭 教師

    av 家庭 教師
    2016年恐怖
    简介:《风起霓裳》是一部由著名导演郑晓龙执导,胡歌、倪妮、秦俊杰、张馨予等众多实力派演员联袂出演的电视剧。该剧改编自晋江文学城签约作者蝶之灵的小说《霓裳羽衣》。该剧讲述了南朝梁武帝萧衍和他的女儿萧淑妃之间的感人故事。萧淑妃因为才华出众,被梁武帝封为皇后,但是在宫廷斗争中,她不得不面对种种挑战和考验。她不仅要保护自己的地位和尊严,还要为了国家和人民的利益而奋斗。同时,她还要面对自己的感情问题,与两位心爱的男人之间做出选择。剧中,胡歌饰演梁武帝,他将这个角色演绎得淋漓尽致,既有着帝王的威严和决断力,又有着温柔体贴的一面,让人既敬畏又感动。倪妮饰演的萧淑妃则是一位才华横溢、聪明过人、勇敢无畏的女性形象,她的表演也得到了观众的高度认可。此外,秦俊杰和张馨予也分别饰演了萧淑妃身边的两位男人,他们的角色形象各具特色,为整个剧集增色不少。除了演员的精湛表演,该剧还有着高水准的制作和画面,场景的布置和服装的设计都非常考究,再加上精美的音乐和配乐,让观众仿佛穿越到了南朝梁的时代。总体来说,《风起霓裳》是一部非常优秀的历史剧,它不仅展现了南朝梁的历史背景和文化底蕴,更是一部充满人性温暖和感动的作品。如果你是历史剧爱好者,或者是胡歌、倪妮等演员的粉丝,那么这部电视剧一定不容错过。
  • hina av 2.5蓝光

    hina av

    hina av
    2021年剧情
    简介:“胡闹,朕说一句,你便推诿十句,”安澜咳了一声,“如今那西塘国皇子的事既已过去了,二姐也不想再罚你了,只是从今往后,你得听二姐地话,好好地为大周出力。”
  • 健身房 打炮 6.7完结

    健身房 打炮

    健身房 打炮
    2024年惊悚
    简介:  这个不死之身自出生即遭诅咒,永生不老。他一心复仇,踏上找回灵魂的旅程,设法了结六百年的血海深仇。
  • snis 964 7.2高清

    snis 964

    snis 964
    2014年悬疑
    简介:在人民解放军中,陈赓大将是一位智勇双全、战功赫赫的人物。他怀着弃文从军的志向考入黄埔军校,成为著名的“黄埔三杰”之一,他曾经在东征战斗的枪林弹雨中冒死将蒋介石背出险境,在苏区反“围剿”的战斗中,他身负重伤,在担架上指挥作战,几次将红军救出重围,在长征中,他奇迹般地救活了已被认为不治的周恩来,在上海疗伤期间,他担当了“红色特工”的指挥者,他的机智果敢成为日后许多文学影视作品争先传诵的佳话。他从蒋介石的禁锢中侥幸脱身,个中的原因是至今都无法揭开的迷团,他在抗战中指挥过的战斗,事隔半个世纪之后仍被军事学家们称颂为“妙笔神来”,在解放战争中,他与昔日的老师,同学对垒,新中国成立后,他因胡志明的点将而与法国侵略者厮杀,抗美援朝中他又与拥有先进武器装备的美军较量。他有过失败,但他总是最后的赢家,他岁的人生中,几乎伴随了整个中国共产党武装斗争的历史。第一集:年月日,蒋介石在接受一位美国记者的采访时,提到黄埔军校时期著名的“黄埔三杰”;多年后周恩来面对这位记者也谈到了同样的话题。国共两党的领袖都不约而同地提起,“三杰”中的一人曾经救过他们两人的性命,他就是大将陈赓。一个世纪前的月日,陈赓出生在湖南湘乡的一个小村子里。受祖父的影响,他一直怀有弃文从军的志向。岁时为了反抗包办婚姻,他离开家乡参加了湘军。就在中国共产党成立的第二年,岁的陈赓参加了党组织,从此奠定了毕生的政治信仰。年月,陈赓考入黄埔军校,这里成为他戎马一生的起点。在国民革命军第二次东征中,蒋介石看到陈赓作战勇敢,就将他调到自己身边担任警卫任务。不久在一次激励的战斗中,陈赓冒死救出了处于危难之际的蒋介石。在苏区的反“围剿”战斗中,陈赓的军事指挥才华初露锋芒,但他的右腿中弹,只得返回上海,而这次却被叛徒出卖遭到逮捕。在各方的压力下,蒋介石没有像以往那样杀掉这个不肯改变信仰的共产党人,而是给了他一个宽松的生活环境,陈赓便轻而易举地脱身了。年月,红军开始战略大转移,正处于被审查阶段的陈赓带着一群和他待遇相同的干部,几次为处于重围中的红军杀开了一条血路,毛泽东对此的评价是:“陈赓行,可以当军长”。长征途中,他又奇迹般地救了已经处于不治之中的周恩来。第二集:年月,全面抗战爆发,国共两党再次携手面对民族危机。在国民革命军将领的花名册中,蒋介石再次见到了那个让他爱恨交织的名字——陈赓。陈赓被任命为八路军第师第旅旅长,时年岁。初与日军交手,身经百战的陈赓有些“水土不服”。属下的部队被偷袭的日军打散,受到了毛泽东的严厉批评。然而陈赓却突发奇想,在吃亏的地点七亘村连续两次设伏,不仅反败为胜,而且让国民党的千余官兵逃出了日军的包围。军校出身的陈赓打起仗来有时却是有悖于兵法。邯长公路上的神头岭一带地势开阔,找不到任何隐蔽物,并不合适于打伏击战。而陈赓却坚持在此设伏,他的决定产生了出其不意的效果。当年参战的日军这样记录这场战斗:“这样的损失是从来没有过的”。就在陈赓创造游击战和伏击战的典范战例时,他的妻子王根生牺牲在抗日前线。陈赓在日记中说:“这是我最惨痛的一天”,他选择了一种特殊的方式表达自己的悲哀。第三集: 年月日,美国驻华大使赫尔应中共要求,专程前往延安迎接毛泽东赴重庆与蒋介石进行谈判。临行前毛泽东告诉为他担心的将领们,他的生命安全以及谈判的最终结果在很大程度上取决于当时国共双方正在进行的一场战斗——上党争夺战。在这场战役中,陈赓率领老部下们打了一场悬念迭起但精彩纷呈的歼灭战,与兄弟部队一起彻底收拾了阎锡山充当急先锋的万人马。两天后国共双方签定和平协定,第二天毛泽东顺利返回延安。在解放战争的硝烟中,陈赓与昔日的师长和同窗进行的是面对面的殊死搏杀。在同蒲铁路线的争夺战中,他面对的是号称“天下第一旅”的胡宗南的王牌军,直到被俘时旅长黄正诚还在抱怨陈赓不按教程打仗;淮南战役中,从未打过大规模阻击战的陈赓拦住了黄维兵团的万大军,为战役的胜利写下了关键的一笔;我军渡过长江后,陈赓江南大迁回,展开粤桂边大追歼战,堵住了白崇禧部队从沿海逃生的大门。当人们正沉浸于新中国诞生的喜悦中时,陈赓却神秘失踪。越南共产党的领导人胡志明亲自点将,请陈赓协助其抗击入侵的法国军队,陈赓指挥的战役使法军遭受了自印度支那战争开始后最惨重的失败;在抗美援朝的前线,陈赓受一位战士的启发,让部下们修起了地下长城,于是不久有了举世闻名的上甘岭战役。回国后,陈赓受命在哈尔滨创办了中国人民解放军第一座军事工程学院,培养出第一批现代的军事人才。年月,岁的他被授予大将军衔;年后担任国防科学技术委员会副主任,为新中国的国防尖端技术奔走呼喊。年月日,陈赓对夫人傅涯说,过两天就是农历二月初一,自己快过生日了,想吃她做的手擀面。这是他第一次也是唯一的一次提起自己的生日。月日凌晨,陈赓因大面积心肌梗塞发作,抢救无效,时分他的心脏停止了跳动,停止在他岁生日的前一天。一代大将陈赓以他传奇般的人生,成为人们心目中的天地英雄。
  • 神楽 エロ 7.71080P

    神楽 エロ

    神楽 エロ
    2019年恐怖
    简介:“人还没老呢,脑子却不好使了,看来让你从执行总裁的位置上下来还真对。”童若云嘀咕了一句,可声音却大的足以让林父听到,“你忘了,我可是叫谢丽,姓谢,就算跟你有血缘关系,可在法律上,我的监护人也不是你。”
  • miaa-574 6.530集全

    miaa-574

    miaa-574
    2023年惊悚
    简介:任智勋是小有名气的精神科医师,时常和不同的女子一味沉湎肉体的欢愉。他的同事兼好友俊基通过相亲结识美丽的提线木偶师贤贞,贤贞时常会看到恐怖的鬼影出现在她的面前。 任智勋是小有名气的精神科医师,时常和不同的女子一味沉湎肉体的欢愉。他的同事兼好友俊基通过相亲结识美丽的提线木偶师贤贞,贤贞时常会看到恐怖的鬼影出现在她的面前。
  • ssis-246 10.0超清

    ssis-246

    ssis-246
    2020年枪战
    简介:&;&;  简•奥斯汀(安妮·海瑟薇 饰)的一生是否如她的文字那样充满曲折的过程和完满的结局?《成为简》用传记方式描述她的一生:她的母亲竭力为她撮合婚事,对象是上层社会的有钱人。但是简不接受没有爱情的婚姻,认为女人要靠自己的能力去养活自身。于是,她拒绝贵族瓦斯莱先生的求婚,爱上了心灵相通的汤姆•勒弗罗伊(詹姆斯·麦卡沃伊 饰)。&;&;  好事多磨,有人从中作梗,导致汤姆家人并不赞成二人婚事,汤姆决定携简私奔。但是这样一来,汤姆的经济来源就会被切断,简亦将面临着世俗的压力和贫困的生活。到底二人在私奔路上会走得多远?会不会有美满的结局?&;&;
  • スゴテク我慢 7.930集全

    スゴテク我慢

    スゴテク我慢
    2020年网剧
    简介:随着明太祖朱元璋的驾崩,围绕新帝登基的争夺则进入到白热化。传位给朱允炆(陈山聪 饰)的遗诏不幸遗失,这个消息一经走失得到了江湖上各类势力人马的追逐。朱允炆派他的得力助手,来自锦衣卫的敖笑风(谢天华 饰)前往追查。在追查的过程中,笑风意外邂逅了燕王朱棣(马德钟 饰)及他的谋臣马三保(陈键锋 饰)。笑风和三保斗智斗勇,经过一些事情,二人迅速成为好友,但这时,笑风也得知了朱棣逆谋之意,暗自警惕着。因为一次意外,笑风失去了记忆,竟而连性格也大变。而笑风的失忆无法阻止事情的向前推动,后称的“靖难之变”依然照旧上演,不存在的洪武三十二年,究竟发生了什么,借由笑风之眼,我们来一窥究竟。
  • stars 138 9.7720P

    stars 138

    stars 138
    2022年农村
    简介:南方澳是台湾归属日本殖民地时期由日本筹建的渔港,一哲(曾一哲)的阿公作为建设摄影师来到这里后,着迷于它的美丽与宁静,就此扎根,但他的儿子一心要回日本。混黑社会的后者结识一哲母亲后,携带她辛苦积攒的血汗钱回了日本,单留幼儿一哲与阿仁(程毓仁)于她。一哲母亲是原住民,地位原本卑微,因没与一哲父亲完婚,此事发生后她更觉无脸示人,带一哲与阿仁回了故乡兰屿,自此沉浸在悲伤中,后来自杀身亡。不久,一哲与阿仁被黑社会老大带回南方澳,加入黑社会。一哲的父亲在日本黑社会大哥做得风光,却因躲避与仇家阿顺的恩怨连累一哲与阿仁,后来性情冲动的阿仁惹下祸端,一哲代他入狱三年。出狱刚入家门,一哲便被阿顺找上,忍气处理完毕必须处理的事,他有心与女友阿佩(陈佩君)过风平浪静的日子——阿佩虽不能释怀前男友对她的背叛,却也对一哲处处关心。而有心学傀儡戏的阿仁也计划与跛脚女友小龟(詹正筠)去过相对平稳的生活。但麻烦不请自来:一哲父亲为了利益与阿顺做生意,后者逮住机会狠狠将他及阿仁羞辱,而手下更是误杀了小龟。
  • 禁断 介護 無料 動画 5.61080P

    禁断 介護 無料 動画

    禁断 介護 無料 動画
    2004年历史
    简介:该剧讲述的是发生在我们都市一个个家庭装修故事,剧中的主角在自己从事家装成长过程中,经历了无数个各种令人啼笑皆非情景故事。这些故事大部分来源真实的生活,部分故事剧情是将它们还原于真实生活;它们真实,感人。在《疯狂家装》的一系列故事中,不仅了解到了现代都市生活的各种困境,还了解到各色各样人物的鲜为人知的另一面。既能看到那些可怜的装修工的屌丝和苦闷,又看到那些市井小人的市侩嘴脸;既能看到现代都市小人物的艰辛困苦,又能感受到现代人的不屈不饶的奋斗精神。它是现代都市一个侧影,是它华丽灯光下的人间喜剧。网络剧《疯狂家装》为我们揭开一张城市的掩饰面孔,让我们直视生活的本质。